Selected article for: "active site and computational docking"

Author: Savarino, Andrea
Title: Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza
  • Cord-id: 2w6vgd92
  • Document date: 2005_5_12
  • ID: 2w6vgd92
    Snippet: When unexpected diseases such as the severe acute respiratory syndrome (SARS) and avian influenza become a serious threat to public health, an immediate response is imperative. This should take into consideration existing licensed antiviral drugs against other viral diseases already known to be safe for use in humans. In this report, evidence is presented that HIV-1 protease inhibitors (PIs) currently used in anti-HIV-1 therapies might exert some effects on SARS and perhaps, on avian influenza.
    Document: When unexpected diseases such as the severe acute respiratory syndrome (SARS) and avian influenza become a serious threat to public health, an immediate response is imperative. This should take into consideration existing licensed antiviral drugs against other viral diseases already known to be safe for use in humans. In this report, evidence is presented that HIV-1 protease inhibitors (PIs) currently used in anti-HIV-1 therapies might exert some effects on SARS and perhaps, on avian influenza. Evidence for the potential benefits of PIs against the SARS coronavirus (SARS-CoV) is provided by empirical clinical studies, in vivo viral inhibition assays and computational simulations of the docking of these compounds to the active site of the main SARS-CoV protease. As suggested by in silico docking of these molecules to a theoretical model of a subunit of type A influenza virus RNA-dependent RNA polymerase, there also exists a remote possibility that these PIs may have an effect on avian influenza viruses. Although this evidence is still far from being definitive, the results so far obtained suggest that PIs should be seriously taken into consideration for further testing as potential therapeutic agents for SARS and avian influenza.

    Search related documents:
    Co phrase search for related documents
    • accession number and acute respiratory syndrome: 1, 2, 3
    • accession number and acute sars cov respiratory syndrome coronavirus: 1, 2, 3
    • active residue and acute respiratory syndrome: 1, 2, 3
    • active residue and acute sars cov respiratory syndrome coronavirus: 1, 2
    • active residue and lopinavir ritonavir: 1
    • active site and acute death respiratory distress syndrome: 1
    • active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active site and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • active site and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • acute respiratory syndrome and addition time: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and addition time experiment: 1
    • acute respiratory syndrome and log reduction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and long time likely: 1, 2
    • acute respiratory syndrome and lopinavir effect: 1, 2, 3, 4
    • acute respiratory syndrome and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory syndrome and lopinavir ritonavir addition: 1, 2, 3, 4, 5, 6
    • acute sars cov respiratory syndrome coronavirus and lopinavir effect: 1, 2
    • acute sars cov respiratory syndrome coronavirus and lopinavir ritonavir: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute sars cov respiratory syndrome coronavirus and lopinavir ritonavir addition: 1, 2