Author: Zhou, Cong; Yu, Han
Title: Mask-Guided Region Attention Network for Person Re-Identification Cord-id: 24w3n4jj Document date: 2020_4_17
ID: 24w3n4jj
Snippet: Person re-identification (ReID) is an important and practical task which identifies pedestrians across non-overlapping surveillance cameras based on their visual features. In general, ReID is an extremely challenging task due to complex background clutters, large pose variations and severe occlusions. To improve its performance, a robust and discriminative feature extraction methodology is particularly crucial. Recently, the feature alignment technique driven by human pose estimation, that is, m
Document: Person re-identification (ReID) is an important and practical task which identifies pedestrians across non-overlapping surveillance cameras based on their visual features. In general, ReID is an extremely challenging task due to complex background clutters, large pose variations and severe occlusions. To improve its performance, a robust and discriminative feature extraction methodology is particularly crucial. Recently, the feature alignment technique driven by human pose estimation, that is, matching two person images with their corresponding parts, increases the effectiveness of ReID to a certain extent. However, we argue that there are still a few problems among these methods such as imprecise handcrafted segmentation of body parts, and some improvements can be further achieved. In this paper, we present a novel framework called Mask-Guided Region Attention Network (MGRAN) for person ReID. MGRAN consists of two major components: Mask-guided Region Attention (MRA) and Multi-feature Alignment (MA). MRA aims to generate spatial attention masks and meanwhile mask out the background clutters and occlusions. Moreover, the generated masks are utilized for region-level feature alignment in the MA module. We then evaluate the proposed method on three public datasets, including Market-1501, DukeMTMC-reID and CUHK03. Extensive experiments with ablation analysis show the effectiveness of this method.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date