Author: Okada, Kosuke; Motoyoshi, Isamu
Title: Human Texture Vision as Multi-Order Spectral Analysis Cord-id: 48e74m39 Document date: 2021_7_26
ID: 48e74m39
Snippet: Texture information plays a critical role in the rapid perception of scenes, objects, and materials. Here, we propose a novel model in which visual texture perception is essentially determined by the 1st-order (2D-luminance) and 2nd-order (4D-energy) spectra. This model is an extension of the dimensionality of the Filter-Rectify-Filter (FRF) model, and it also corresponds to the frequency representation of the Portilla-Simoncelli (PS) statistics. We show that preserving two spectra and randomizi
Document: Texture information plays a critical role in the rapid perception of scenes, objects, and materials. Here, we propose a novel model in which visual texture perception is essentially determined by the 1st-order (2D-luminance) and 2nd-order (4D-energy) spectra. This model is an extension of the dimensionality of the Filter-Rectify-Filter (FRF) model, and it also corresponds to the frequency representation of the Portilla-Simoncelli (PS) statistics. We show that preserving two spectra and randomizing phases of a natural texture image result in a perceptually similar texture, strongly supporting the model. Based on only two single spectral spaces, this model provides a simpler framework to describe and predict texture representations in the primate visual system. The idea of multi-order spectral analysis is consistent with the hierarchical processing principle of the visual cortex, which is approximated by a multi-layer convolutional network.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date