Selected article for: "art method and image classification"

Author: KC, Kamal; Yin, Zhendong; Wu, Mingyang; Wu, Zhilu
Title: Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images
  • Cord-id: 6kcoeepv
  • Document date: 2021_1_7
  • ID: 6kcoeepv
    Snippet: The COVID-19, novel coronavirus or SARS-Cov-2, has claimed hundreds of thousands of lives and affected millions of people all around the world with the number of deaths and infections growing exponentially. Deep convolutional neural network (DCNN) has been a huge milestone for image classification task including medical images. Transfer learning of state-of-the-art models have proven to be an efficient method of overcoming deficient data problem. In this paper, a thorough evaluation of eight pre
    Document: The COVID-19, novel coronavirus or SARS-Cov-2, has claimed hundreds of thousands of lives and affected millions of people all around the world with the number of deaths and infections growing exponentially. Deep convolutional neural network (DCNN) has been a huge milestone for image classification task including medical images. Transfer learning of state-of-the-art models have proven to be an efficient method of overcoming deficient data problem. In this paper, a thorough evaluation of eight pre-trained models is presented. Training, validating, and testing of these models were performed on chest X-ray (CXR) images belonging to five distinct classes, containing a total of 760 images. Fine-tuned models, pre-trained in ImageNet dataset, were computationally efficient and accurate. Fine-tuned DenseNet121 achieved a test accuracy of 98.69% and macro f1-score of 0.99 for four classes classification containing healthy, bacterial pneumonia, COVID-19, and viral pneumonia, and fine-tuned models achieved higher test accuracy for three-class classification containing healthy, COVID-19, and SARS images. The experimental results show that only 62% of total parameters were retrained to achieve such accuracy.

    Search related documents:
    Co phrase search for related documents
    • accuracy f1 score and acute respiratory syndrome: 1, 2, 3, 4, 5, 6
    • accuracy f1 score and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    • accuracy f1 score and lot contribute: 1
    • accuracy f1 score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accuracy f1 score and machine learning method: 1, 2, 3
    • accuracy f1 score recall and logistic regression: 1, 2, 3, 4, 5, 6, 7
    • accuracy f1 score recall and lot contribute: 1
    • accuracy f1 score recall and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accuracy f1 score recall and machine learning method: 1
    • accuracy f1 score recall precision and logistic regression: 1, 2, 3, 4, 5, 6
    • accuracy f1 score recall precision and lot contribute: 1
    • accuracy f1 score recall precision and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accuracy f1 score recall precision and machine learning method: 1
    • accuracy increase and acute respiratory syndrome: 1, 2, 3, 4, 5, 6
    • accuracy increase and logistic regression: 1, 2, 3
    • accuracy increase and low latency: 1
    • accuracy increase and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • accuracy increase and machine learning field: 1
    • accuracy obtain and acute respiratory syndrome: 1, 2