Author: Huang, Yanrong; Li, Shuaihao; Wang, Rui; Zhao, Zhijiang; Huang, Bin; Wei, Bo; Zhu, Guangming
Title: Forecasting Oil Demand with the Development of Comprehensive Tourism Cord-id: 2842qyfv Document date: 2021_6_21
ID: 2842qyfv
Snippet: The prediction of oil demand is an important issue related to national energy security and economic development. With the COVID-19 outbreak, the international oil price fluctuates sharply, and oil consumption growth slows down. Therefore, accurate prediction of oil demand plays an important practical and theoretical role. In this paper, in accordance with the Chinese state policy stimulation of domestic demand for energy resources, we have selected 15 major factors and analyzed their influence o
Document: The prediction of oil demand is an important issue related to national energy security and economic development. With the COVID-19 outbreak, the international oil price fluctuates sharply, and oil consumption growth slows down. Therefore, accurate prediction of oil demand plays an important practical and theoretical role. In this paper, in accordance with the Chinese state policy stimulation of domestic demand for energy resources, we have selected 15 major factors and analyzed their influence on the domestic oil demand from the perspective of comprehensive tourism analysis. Based on the data analysis of oil consumption from 2000 to 2018, four neutral network methods are used to predict the influence of selected factors on oil consumption demand of China. The experimental results show that the best correlation is obtained between domestic tourism revenue and total tourism expenditure factors and oil demand, and the Layer Recurrent Neutral Network method has high prediction accuracy, stronger stability, and the best performance.
Search related documents:
Co phrase search for related documents- abroad home and mae mean absolute error: 1
- absolute error and actual consumption: 1
- absolute error and adaptive learning: 1, 2, 3
- absolute error and logistic model: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- absolute error and mae method: 1
- absolute percentage error and actual consumption: 1
- absolute percentage error and adaptive learning: 1, 2
- absolute percentage error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- absolute percentage error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
- actual consumption and logistic model: 1
- actual consumption and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date