Author: Zhu, Huifang; Zheng, Chunfu
Title: When PARPs Meet Antiviral Innate Immunity. Cord-id: 2m08r69c Document date: 2021_1_19
ID: 2m08r69c
Snippet: The poly(ADP-ribose) polymerases (PARPs) family contains 17 members in humans, sharing a PARP domain to transfer ADP-ribose groups to target proteins to trigger ADP-ribosylation. The roles of PARPs have evolved from DNA damage repair to diverse biological processes, such as gene transcription, cellular stress response, etc. Recently, seminal studies have demonstrated the critical roles of PAPRs in antiviral innate immunity. PARPs catalyze ADP-ribosylation, a fundamental post-translational modifi
Document: The poly(ADP-ribose) polymerases (PARPs) family contains 17 members in humans, sharing a PARP domain to transfer ADP-ribose groups to target proteins to trigger ADP-ribosylation. The roles of PARPs have evolved from DNA damage repair to diverse biological processes, such as gene transcription, cellular stress response, etc. Recently, seminal studies have demonstrated the critical roles of PAPRs in antiviral innate immunity. PARPs catalyze ADP-ribosylation, a fundamental post-translational modification, using NAD+ as a substrate. ADP-ribosylation can occur either as mono- or poly-(ADP-ribosyl)ation, which is initially linked to DNA damage repair, as exemplified by PARP1. Recent advances in host antiviral immunity demonstrated that several PARPs, such as PARP9, 11, 12, 13, 14, etc., have broad-spectrum antiviral activities that are independent of their ADP-ribosylation.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date