Author: Smith, David S.; Richey, Elizabeth A.; Brunetto, Wendy L.
Title: A Symptom-Based Rule for Diagnosis of COVID-19 Cord-id: 5h35n8eh Document date: 2020_10_24
ID: 5h35n8eh
Snippet: SARS-CoV-19 PCR testing has a turn-around time that makes it impractical for real-time decision-making, and current point-of-care tests have limited sensitivity, with frequent false negatives. The study objective was to develop a clinical prediction rule to use with a point-of-care test to diagnose COVID-19 in symptomatic outpatients. A standardized clinical questionnaire was administered prior to SARS-CoV-2 PCR testing. Data was extracted by a physician blinded to the result status. Individual
Document: SARS-CoV-19 PCR testing has a turn-around time that makes it impractical for real-time decision-making, and current point-of-care tests have limited sensitivity, with frequent false negatives. The study objective was to develop a clinical prediction rule to use with a point-of-care test to diagnose COVID-19 in symptomatic outpatients. A standardized clinical questionnaire was administered prior to SARS-CoV-2 PCR testing. Data was extracted by a physician blinded to the result status. Individual symptoms were combined into 326 unique clinical phenotypes. Multivariable logistic regression was used to identify independent predictors of COVID-19, from which a weighted clinical prediction rule was developed, to yield stratified likelihood ratios for varying scores. A retrospective cohort of 120 SARS-CoV-2-positive cases and 120 SARS-CoV-2-negative matched controls among symptomatic outpatients in a Connecticut HMO was used for rule development. A temporally distinct cohort of 40 cases was identified for validation of the rule. Clinical phenotypes independently associated with COVID-19 by multivariable logistic regression include loss of taste or smell (olfactory phenotype, 2 points) and fever and cough (febrile respiratory phenotype, 1 point). Wheeze or chest tightness (reactive airways phenotype, − 1 point) predicted non-COVID-19 respiratory viral infection. The AUC of the model was 0.736 (0.674–0.798). Application of a weighted C19 rule yielded likelihood ratios for COVID-19 diagnosis for varying scores ranging from LR 15.0 for 3 points to LR 0.1 for − 1 point. Using a Bayesian diagnostic approach, combining community prevalence with the evidence-based C19 rule to adjust pretest probability, clinicians can apply a point of care test with limited sensitivity across a range of clinical scenarios to differentiate COVID-19 infection from influenza and respiratory viral infection.
Search related documents:
Co phrase search for related documents- adolescent child and logistic regression: 1, 2, 3
- local prevalence and logistic regression: 1, 2, 3, 4
- local prevalence and logistic regression model: 1
- local prevalence and loss fever: 1, 2
- local prevalence and low prevalence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- logistic regression and loss fever: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- logistic regression and low prevalence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- logistic regression and lr infection: 1
- logistic regression and lr lr specificity: 1, 2, 3
- logistic regression diagnostic model and low prevalence: 1
- logistic regression model and low prevalence: 1, 2, 3, 4, 5, 6, 7, 8
- loss fever and low prevalence: 1, 2, 3
- lr infection and lr lr specificity: 1
Co phrase search for related documents, hyperlinks ordered by date