Author: Banerjee, Avinandan; Bhattacharya, Rajdeep; Bhateja, Vikrant; Singh, Pawan Kumar; Lay-Ekuakille, Aime’; Sarkar, Ram
Title: COFE-Net: An ensemble strategy for Computer-Aided Detection for COVID-19 Cord-id: dn9e3a03 Document date: 2021_10_14
ID: dn9e3a03
Snippet: Biomedical images contain a large volume of sensor measurements, which can reveal the descriptors of the disease under investigation. Computer-based analysis of such measurements helps detect the disease, and thereby swiftly aid medical professionals to choose adequate therapy. In this paper, we propose a robust deep learning ensemble framework known as COVID Fuzzy Ensemble Network, or COFE-Net. This strategy is proposed for the task of COVID-19 screening from chest X-rays (CXR) and CT Scans, as
Document: Biomedical images contain a large volume of sensor measurements, which can reveal the descriptors of the disease under investigation. Computer-based analysis of such measurements helps detect the disease, and thereby swiftly aid medical professionals to choose adequate therapy. In this paper, we propose a robust deep learning ensemble framework known as COVID Fuzzy Ensemble Network, or COFE-Net. This strategy is proposed for the task of COVID-19 screening from chest X-rays (CXR) and CT Scans, as a part of Computer-Aided Detection (CADe) for medical practitioners. We leverage the strategy of Transfer Learning for Convolutional Neural Networks (CNNs) widely adopted in recent literature, and further propose an efficient ensemble network for their combination. The principles of fuzzy logic have been leveraged to combine the measured decision scores generated by three state-of-the-art CNNs - Inception V3, Inception ResNet V2 and DenseNet 201 - through the Choquet fuzzy integral. Experimental results support the efficacy of our approach over empirical ensembling, as the fuzzy ensembling strategy for biomedical measurement consists of dynamic refactoring of the classifier ensemble weights on the fly, based upon the confidence scores for coalitions of inputs. This is the chief advantage of our biomedical measurement strategy over others as other methods do not adjust to the multiple generated measurements dynamically unlike ours.Impressive results on multiple datasets demonstrate the effectiveness of the proposed method. The source code of our proposed method is made available at: https://github.com/theavicaster/covid-cade-ensemble.
Search related documents:
Co phrase search for related documents- accurate feature and acute respiratory syndrome: 1, 2
- achieve result and acute respiratory syndrome: 1
- activation map and acute respiratory syndrome: 1, 2
- actual value and acute respiratory syndrome: 1
Co phrase search for related documents, hyperlinks ordered by date