Author: Wei, Dan; Jiang, Qingshan; Wei, Yanjie; Wang, Shengrui
Title: A novel hierarchical clustering algorithm for gene sequences Cord-id: 61djk4bs Document date: 2012_7_23
ID: 61djk4bs
Snippet: BACKGROUND: Clustering DNA sequences into functional groups is an important problem in bioinformatics. We propose a new alignment-free algorithm, mBKM, based on a new distance measure, DMk, for clustering gene sequences. This method transforms DNA sequences into the feature vectors which contain the occurrence, location and order relation of k-tuples in DNA sequence. Afterwards, a hierarchical procedure is applied to clustering DNA sequences based on the feature vectors. RESULTS: The proposed di
Document: BACKGROUND: Clustering DNA sequences into functional groups is an important problem in bioinformatics. We propose a new alignment-free algorithm, mBKM, based on a new distance measure, DMk, for clustering gene sequences. This method transforms DNA sequences into the feature vectors which contain the occurrence, location and order relation of k-tuples in DNA sequence. Afterwards, a hierarchical procedure is applied to clustering DNA sequences based on the feature vectors. RESULTS: The proposed distance measure and clustering method are evaluated by clustering functionally related genes and by phylogenetic analysis. This method is also compared with BlastClust, CD-HIT-EST and some others. The experimental results show our method is effective in classifying DNA sequences with similar biological characteristics and in discovering the underlying relationship among the sequences. CONCLUSIONS: We introduced a novel clustering algorithm which is based on a new sequence similarity measure. It is effective in classifying DNA sequences with similar biological characteristics and in discovering the relationship among the sequences.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date