Selected article for: "inhibitory activity and neutralizing activity"

Author: Kondo, T.; Iwatani, Y.; Matsuoka, K.; Fujino, T.; Umemoto, S.; Yokomaku, Y.; Ishizaki, K.; Kito, S.; Sezaki, T.; Hayashi, G.; Murakami, H.
Title: Antibody-like proteins that capture and neutralize SARS-CoV-2
  • Cord-id: 682k95jr
  • Document date: 2020_10_14
  • ID: 682k95jr
    Snippet: To combat severe acute respiratory syndrome–related coronavirus 2 (SARS-CoV-2) and any unknown emerging pathogens in the future, the development of a rapid and effective method to generate high-affinity antibodies or antibody-like proteins is of critical importance. We here report high-speed in vitro selection of multiple high-affinity antibody-like proteins against various targets including the SARS-CoV-2 spike protein. The sequences of monobodies against the SARS-CoV-2 spike protein were suc
    Document: To combat severe acute respiratory syndrome–related coronavirus 2 (SARS-CoV-2) and any unknown emerging pathogens in the future, the development of a rapid and effective method to generate high-affinity antibodies or antibody-like proteins is of critical importance. We here report high-speed in vitro selection of multiple high-affinity antibody-like proteins against various targets including the SARS-CoV-2 spike protein. The sequences of monobodies against the SARS-CoV-2 spike protein were successfully procured within only 4 days. Furthermore, the obtained monobody efficiently captured SARS-CoV-2 particles from the nasal swab samples of patients and exhibited a high neutralizing activity against SARS-CoV-2 infection (half-maximal inhibitory concentration, 0.5 nanomolar). High-speed in vitro selection of antibody-like proteins is a promising method for rapid development of a detection method for, and of a neutralizing protein against, a virus responsible for an ongoing, and possibly a future, pandemic.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1