Author: Mishra, Shreyas
Title: Deep Transfer Learning-Based Framework for COVID-19 Diagnosis Using Chest CT Scans and Clinical Information Cord-id: 70lo0n23 Document date: 2021_7_24
ID: 70lo0n23
Snippet: The Coronavirus Disease 2019 (COVID-19) which first emerged in Wuhan, China in late December, 2019, has now spread to all the countries in the world. Conventional testing methods such as the antigen test, serology tests, and polymerase chain reaction tests are widely used. However, the test results can take anything from a few hours to a few days to reach the patient. Chest CT scan images have been used as alternatives for the detection of COVID-19 infection. Use of CT scan images alone might ha
Document: The Coronavirus Disease 2019 (COVID-19) which first emerged in Wuhan, China in late December, 2019, has now spread to all the countries in the world. Conventional testing methods such as the antigen test, serology tests, and polymerase chain reaction tests are widely used. However, the test results can take anything from a few hours to a few days to reach the patient. Chest CT scan images have been used as alternatives for the detection of COVID-19 infection. Use of CT scan images alone might have limited capabilities, which calls attention to incorporating clinical features. In this paper, deep learning algorithms have been utilized to integrate the chest CT scan images obtained from patients with their clinical characteristics for fast and accurate diagnosis of COVID-19 patients. The framework uses an ANN to obtain the probability of the patient being infected with COVID-19 using their clinical information. Beyond a certain threshold, the chest CT scan of the patient is classified using a deep learning model which has been trained to classify the CT scan with 99% accuracy.
Search related documents:
Co phrase search for related documents- accuracy comparison and lymphocyte count: 1, 2
- accuracy comparison and machine learn: 1
- accuracy comparison and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- accuracy comparison and machine learning model: 1, 2, 3
- accuracy give and loss value: 1
- accuracy give and machine learning: 1, 2, 3, 4, 5
- accuracy give and machine learning model: 1, 2
- accuracy score and adaptive histogram equalization: 1, 2, 3, 4
- accuracy score and lung inflammation: 1
- accuracy score and lymphocyte count: 1
- accuracy score and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- accuracy score and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Co phrase search for related documents, hyperlinks ordered by date