Selected article for: "CT image and powerful tool"

Author: Walsh, C.; Tafforeau, P.; Wagner, Willi L.; Jafree, D. J.; Bellier, A.; Werlein, C.; Kühnel, M. P.; Boller, E.; Walker-Samuel, S.; Robertus, J. L.; Long, D. A.; Jacob, J.; Marussi, S.; Brown, E.; Holroyd, N.; Jonigk, D. D.; Ackermann, M.; Lee, P. D.
Title: Multiscale three-dimensional imaging of intact human organs down to the cellular scale using hierarchical phase-contrast tomography.
  • Cord-id: 78uqwekc
  • Document date: 2021_2_3
  • ID: 78uqwekc
    Snippet: Human organs are complex, three-dimensional and multiscale systems. Spatially mapping the human body down through its hierarchy, from entire organs to their individual functional units and specialised cells, is a major obstacle to fully understanding health and disease. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique utilising the European Synchrotron Radiation Facility’s Extremely Brilliant Source: the world’s first
    Document: Human organs are complex, three-dimensional and multiscale systems. Spatially mapping the human body down through its hierarchy, from entire organs to their individual functional units and specialised cells, is a major obstacle to fully understanding health and disease. To meet this challenge, we developed hierarchical phase-contrast tomography (HiP-CT), an X-ray phase propagation technique utilising the European Synchrotron Radiation Facility’s Extremely Brilliant Source: the world’s first high-energy 4(th) generation X-ray source. HiP-CT enabled three-dimensional and non-destructive imaging at near-micron resolution in soft tissues at one hundred thousand times the voxel size whilst maintaining the organ’s structure. We applied HiP-CT to image five intact human parenchymal organs: brain, lung, heart, kidney and spleen. These were hierarchically assessed with HiP-CT, providing a structural overview of the whole organ alongside detail of the organ’s individual functional units and cells. The potential applications of HiP-CT were demonstrated through quantification and morphometry of glomeruli in an intact human kidney, and identification of regional changes to the architecture of the air-tissue interface and alveolar morphology in the lung of a deceased COVID-19 patient. Overall, we show that HiP-CT is a powerful tool which can provide a comprehensive picture of structural information for whole intact human organs, encompassing precise details on functional units and their constituent cells to better understand human health and disease.

    Search related documents:
    Co phrase search for related documents
    • absorption low and magnetic resonance: 1