Author: Lai, Zon W.; Lew, Rebecca A.; Yarski, Michael A.; Mu, Fi-Tjen; Andrews, Robert K.; Smith, A. Ian
Title: The Identification of a Calmodulin-Binding Domain within the Cytoplasmic Tail of Angiotensin-Converting Enzyme-2 Cord-id: 2eqrk42b Document date: 2009_5_1
ID: 2eqrk42b
Snippet: Angiotensin-converting enzyme (ACE)-2 is a homolog of the well-characterized plasma membrane-bound angiotensin-converting enzyme. ACE2 is thought to play a critical role in regulating heart function, and in 2003, ACE2 was identified as a functional receptor for severe acute respiratory syndrome coronavirus. We have recently shown that like ACE, ACE2 undergoes ectodomain shedding and that this shedding event is up-regulated by phorbol esters. In the present study, we used gel shift assays to demo
Document: Angiotensin-converting enzyme (ACE)-2 is a homolog of the well-characterized plasma membrane-bound angiotensin-converting enzyme. ACE2 is thought to play a critical role in regulating heart function, and in 2003, ACE2 was identified as a functional receptor for severe acute respiratory syndrome coronavirus. We have recently shown that like ACE, ACE2 undergoes ectodomain shedding and that this shedding event is up-regulated by phorbol esters. In the present study, we used gel shift assays to demonstrate that calmodulin, an intracellular calcium-binding protein implicated in the regulation of other ectodomain shedding events, binds a 16-amino acid synthetic peptide corresponding to residues 762–777 within the cytoplasmic domain of human ACE2, forming a calcium-dependent calmodulin-peptide complex. Furthermore, we have demonstrated that ACE2 expressed in Chinese hamster ovary cells specifically binds to glutathione-S-transferase-calmodulin, but not glutathione-S-transferase alone, in pull-down assays using cell lysates. Finally, to investigate whether calmodulin has any effect on ACE2 ectodomain shedding in cells that endogenously express the enzyme, cells from a human liver cell line (Huh-7) expressing ACE2 were incubated with calmodulin-specific inhibitors, trifluoperazine and calmidazolium. Both trifluoperazine (25 μmol/liter) and calmidazolium, (25 μmol/liter) significantly increased the release of ACE2 into the medium (44.1 ± 10.8%, P < 0.05, Student’s t test; unpaired, two-tailed, and 51.1 ± 7.4% P < 0.05, one-way ANOVA, respectively;), as analyzed by an ACE2-specific quenched fluorescence substrate assay. We also show that the calmodulin-specific inhibitor-stimulated shedding of ACE2 is independent from phorbol ester-induced shedding. In summary, we have demonstrated that calmodulin is able to bind ACE2 and suggest that the ACE2 ectodomain shedding and/or sheddase(s) activation regulated by calmodulin is independent from the phorbol ester-induced shedding.
Search related documents:
Co phrase search for related documents- ace identify and liver heart: 1
- acrylamide gel and lysis buffer: 1
- activation mechanism and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- activation mechanism and adhesion molecule: 1, 2
- activation mechanism and lung injury: 1, 2, 3, 4, 5, 6, 7
- active catalytic site and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6
- acute sars cov respiratory syndrome coronavirus and adhesion molecule: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- acute sars cov respiratory syndrome coronavirus and liver heart: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute sars cov respiratory syndrome coronavirus and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute sars cov respiratory syndrome coronavirus and liver reduce: 1
- acute sars cov respiratory syndrome coronavirus and locally present: 1
- acute sars cov respiratory syndrome coronavirus and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute sars cov respiratory syndrome coronavirus and lysis buffer: 1, 2, 3
- adhesion molecule and liver heart: 1, 2, 3
- adhesion molecule and liver injury: 1
- adhesion molecule and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- liver heart and locally present: 1
- liver heart and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- liver injury and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date