Author: Badhe, Ravindra V.; Nipate, Sonali S.
Title: The use of negative oxygen ion clusters [O(2)(−)(H(2)O)(n)] and bicarbonate ions [HCO(3)(-)] as the supportive treatment of COVID-19 infections: a possibility Cord-id: 5xlyqy7q Document date: 2021_8_5
ID: 5xlyqy7q
Snippet: The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But there are no effective treatments available to save the dying patient in stage 2 (pulmonary) and stage 3 (hyperinflammation) of the infection. The detailed genetic and phenotypical analysis of SARS-CoV
Document: The COVID-19 or novel coronavirus SARS-CoV-2 pandemic is challenging worldwide healthcare system and severely affecting global economy. Furious efforts to end the pandemic including prevention of spread of SARS-CoV-2, use of antiviral drugs, symptomatic treatments and vaccination are underway. But there are no effective treatments available to save the dying patient in stage 2 (pulmonary) and stage 3 (hyperinflammation) of the infection. The detailed genetic and phenotypical analysis of SARS-CoV-2 revealed that the spike protein (S1) has increased positive charges (compared to SARS-CoV) on them and are responsible for attachment to human angiotensin-converting enzyme 2 (ACE2) receptor and infection by the virus. In addition, it was also reported that the inflammation in the tissue rendered the lung environment more acidic supporting the fusion of SARS-CoV-2 with the cells. We hypothesize that the intermittent use of the oxygen ionizer generating negative oxygen ion clusters [O(2)(−)(H(2)O)(n)] and sodium bicarbonate nebulizer (generating HCO(-)); when connected to ventilator inlet or oxygen concentrator will neutralize the spike protein of the virus in respiratory tract and lungs and change the lung environment to neutral/alkaline condition respectively facilitating improved oxygen pressure in blood. These physical changes can effectively reduce the viral burden and help the patient recover from the infection faster.
Search related documents:
Co phrase search for related documents- acute respiratory distress syndrome and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory distress syndrome and lung disease blood pressure: 1
- acute respiratory distress syndrome and lung infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory distress syndrome and lung movement: 1
- acute respiratory distress syndrome and lung phospholipid: 1, 2, 3
- acute respiratory distress syndrome and lung respiratory system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- acute respiratory distress syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory distress syndrome and lung tissue damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
- acute respiratory distress syndrome and lung tissue damage severe: 1, 2
Co phrase search for related documents, hyperlinks ordered by date