Author: Fouladi, Saman; Ebadi, M.J.; Safaei, Ali A.; Bajuri, Mohd Yazid; Ahmadian, Ali
Title: Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio Cord-id: 31lc6ld3 Document date: 2021_8_1
ID: 31lc6ld3
Snippet: The novel 2019 coronavirus disease (COVID-19) has infected over 141 million people worldwide since April 20, 2021. More than 200 countries around the world have been affected by the coronavirus pandemic. Screening for COVID-19, we use fast and inexpensive images from computed tomography (CT) scans. In this paper, ResNet-50, VGG-16, convolutional neural network (CNN), convolutional auto-encoder neural network (CAENN), and machine learning (ML) methods are proposed for classifying Chest CT Images
Document: The novel 2019 coronavirus disease (COVID-19) has infected over 141 million people worldwide since April 20, 2021. More than 200 countries around the world have been affected by the coronavirus pandemic. Screening for COVID-19, we use fast and inexpensive images from computed tomography (CT) scans. In this paper, ResNet-50, VGG-16, convolutional neural network (CNN), convolutional auto-encoder neural network (CAENN), and machine learning (ML) methods are proposed for classifying Chest CT Images of COVID-19. The dataset consists of 1252 CT scans that are positive and 1230 CT scans that are negative for COVID-19 virus. The proposed models have priority over the other models that there is no need of pre-trained networks and data augmentation for them. The classification accuracies of ResNet-50, VGG-16, CNN, and CAENN were obtained 92.24%, 94.07%, 93.84%, and 93.04% respectively. Among ML classifiers, the nearest neighbor (NN) had the highest performance with an accuracy of 94%.
Search related documents:
Co phrase search for related documents- accuracy equal and acute respiratory: 1
Co phrase search for related documents, hyperlinks ordered by date