Author: Yang, Ying; Klionsky, Daniel J
Title: An AMPK-ULK1-PIKFYVE signaling axis for PtdIns5P-dependent autophagy regulation upon glucose starvation. Cord-id: 66ki7h2a Document date: 2021_8_9
ID: 66ki7h2a
Snippet: Glucose deprivation induces macroautophagy/autophagy primarily through AMPK activation. However, little is known about the exact mechanism of this signaling. A recent study from Dr. David C. Rubinsztein's lab showed that ULK1 is activated by AMPK upon glucose starvation, resulting in the phosphorylation of the lipid kinase PIKFYVE on S1548. The activated PIKFYVE consequently enhances the formation of phosphatidylinositol-5-phosphate (PtdIns5P)-containing autophagosomes, and therefore drives auto
Document: Glucose deprivation induces macroautophagy/autophagy primarily through AMPK activation. However, little is known about the exact mechanism of this signaling. A recent study from Dr. David C. Rubinsztein's lab showed that ULK1 is activated by AMPK upon glucose starvation, resulting in the phosphorylation of the lipid kinase PIKFYVE on S1548. The activated PIKFYVE consequently enhances the formation of phosphatidylinositol-5-phosphate (PtdIns5P)-containing autophagosomes, and therefore drives autophagy upregulation. The novel discovery of how ULK1 regulates the non-canonical autophagy signaling (PtdIns5P-dependent autophagy), not only expands our knowledge of autophagy, but also sheds light on therapeutic strategies for curing human disorders, where glucose-induced starvation can play an important role.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date