Selected article for: "CT scan and feature extraction technique"

Author: Seum, A.; Raj, A. H.; Sakib, S.; Hossain, T.; Ieee,
Title: A Comparative Study of CNN Transfer Learning Classification Algorithms with Segmentation for COVID-19 Detection from CT Scan Images
  • Cord-id: 3klsinm3
  • Document date: 2020_1_1
  • ID: 3klsinm3
    Snippet: After it's inception, COVID-19 has spread rapidly all across the globe. Considering this outbreak, by far, it is the most decisive task to detect early and isolate the patients quickly to contain the spread of this virus. In such cases, artificial intelligence and machine learning or deep learning methods can come to aid. For that purpose, we have conducted a qualitative investigation to inspect 12 off-the-shelf Convolution Neural Network (CNN) architectures in classifying COVID-19 from CT scan
    Document: After it's inception, COVID-19 has spread rapidly all across the globe. Considering this outbreak, by far, it is the most decisive task to detect early and isolate the patients quickly to contain the spread of this virus. In such cases, artificial intelligence and machine learning or deep learning methods can come to aid. For that purpose, we have conducted a qualitative investigation to inspect 12 off-the-shelf Convolution Neural Network (CNN) architectures in classifying COVID-19 from CT scan images. Furthermore, a segmentation algorithm for biomedical images - U-Net, is analyzed to evaluate the performance of the CNN models. A publicly available dataset (SARS-COV-2 CT-Scan) containing a total of 2481 CT scan images is employed for the performance evaluation. In terms of feature extraction by excluding the segmentation technique, a performance of 88.60% as the F1 Score and 89.31% as accuracy is achieved by training DenseNet169 architecture. Adopting the U-Net segmentation method, we accomplished the most optimal accuracy and F1 Scores as 89.92% and 89.67% respectively on DenseNet201 model. Furthermore, evaluating the performances, we can affirm that a combination of a Transfer Learning architecture with a segmentation technique (U-Net) enhances the performance of the classification model.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date