Author: Smith, Benjamin A. H.; Bertozzi, Carolyn R.
Title: The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans Cord-id: dewsmuyd Document date: 2021_1_18
ID: dewsmuyd
Snippet: Carbohydrates — namely glycans — decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobio
Document: Carbohydrates — namely glycans — decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas — selectins, Siglecs and glycan-targeted antibodies — this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date