Selected article for: "broad spectrum and inhibitory effect"

Author: Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi
Title: Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells
  • Cord-id: e0g911le
  • Document date: 2014_9_27
  • ID: e0g911le
    Snippet: New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multi
    Document: New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses.

    Search related documents:
    Co phrase search for related documents
    • absence presence and activation inhibition: 1
    • absence presence and activation profile: 1
    • absence presence and addition study: 1, 2, 3, 4, 5
    • absence presence and addition time: 1
    • absolute quantification and addition time: 1, 2