Author: Ghosh, Indrajit
Title: Within host dynamics of SARS-CoV-2 in humans: Modeling immune responses and antiviral treatments Cord-id: 42yo0yjy Document date: 2020_6_3
ID: 42yo0yjy
Snippet: In December 2019, a newly discovered SARS-CoV-2 virus was emerged from China and propagated worldwide as a pandemic. In the absence of preventive medicine or a ready to use vaccine, mathematical models can provide useful scientific insights about transmission patterns and targets for drug development. In this study, we propose a within-host mathematical model of SARS-CoV-2 infection considering innate and adaptive immune responses. We analyze the equilibrium points of the proposed model and obta
Document: In December 2019, a newly discovered SARS-CoV-2 virus was emerged from China and propagated worldwide as a pandemic. In the absence of preventive medicine or a ready to use vaccine, mathematical models can provide useful scientific insights about transmission patterns and targets for drug development. In this study, we propose a within-host mathematical model of SARS-CoV-2 infection considering innate and adaptive immune responses. We analyze the equilibrium points of the proposed model and obtain an expression of the basic reproduction number. We then numerically show the existence of a transcritical bifurcation. The proposed model is calibrated to real viral load data of two COVID-19 patients. Using the estimated parameters, we perform global sensitivity analysis with respect to the peak of viral load. Finally, we study the efficacy of antiviral drugs and vaccination on the dynamics of SARS-CoV-2 infection. Our results suggest that blocking the production of the virus by infected cells decreases the viral load more than reducing the infection rate of healthy cells. Vaccination is also found useful but during the vaccine development phase, blocking virus production from infected cells can be targeted for antiviral drug development.
Search related documents:
Co phrase search for related documents- activation time and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- activation time and adaptive immune response: 1
- activation time and adaptive immune response activation: 1
- activation time and adaptive immune system: 1
- activation time and adaptive innate: 1, 2
- acute respiratory syndrome and adaptive immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immune response activation: 1, 2, 3, 4, 5
- acute respiratory syndrome and adaptive immune response innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive innate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and adaptive innate immune response: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and load reduction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and local stability: 1, 2
- acute respiratory syndrome and locally asymptotically stable: 1
- adaptive immune response and load reduction: 1
- adaptive immune response innate and load reduction: 1
- adaptive immune system and load reduction: 1
- adaptive innate and load reduction: 1, 2
- adaptive innate immune response and load reduction: 1
Co phrase search for related documents, hyperlinks ordered by date