Author: Salman, Saad; Shah, Fahad Hassan; Chaudhry, Maham; Tariq, Muniba; Akbar, Muhammad Yasir; Adnan, Muhammad
Title: In silico analysis of protein/peptide-based inhalers against SARS-CoV-2 Cord-id: 880jx1bt Document date: 2020_10_8
ID: 880jx1bt
Snippet: Aim: Peptide/protein-based inhalers are excessively used to treat respiratory disorders. The molecular docking was performed for these inhalers including human neutralizing S230 light chain-antibody (monoclonal antibodies [mAbs]), alpha-1-antitrypsin (AAT), short-palate-lung and nasal-epithelial clone-1-derived peptides (SPLUNC1) and dornase-alfa (DA) against spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess their inhibitory activity. Materials & method
Document: Aim: Peptide/protein-based inhalers are excessively used to treat respiratory disorders. The molecular docking was performed for these inhalers including human neutralizing S230 light chain-antibody (monoclonal antibodies [mAbs]), alpha-1-antitrypsin (AAT), short-palate-lung and nasal-epithelial clone-1-derived peptides (SPLUNC1) and dornase-alfa (DA) against spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess their inhibitory activity. Materials & methods: HawkDock was used to dock these biologics against SARS-CoV-2 spike-glycoprotein. Results: Results showed that DA, AAT and mAb were quite active against spike glycoprotein with a binding free energy of -26.35 and -22.94 kcal/mol. Conclusion: mAB and AAT combined with DA can be used in the treatment of coronavirus disease of 2019 as a potential anti-SARS-CoV-2 agent.
Search related documents:
Co phrase search for related documents- logistical regulatory and low income: 1
- low income and lung function: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date