Author: Mohan, Puranjay; Paul, Aditya Jyoti; Chirania, Abhay
Title: A Tiny CNN Architecture for Medical Face Mask Detection for Resource-Constrained Endpoints Cord-id: e45u7365 Document date: 2020_11_30
ID: e45u7365
Snippet: The world is going through one of the most dangerous pandemics of all time with the rapid spread of the novel coronavirus (COVID-19). According to the World Health Organisation, the most effective way to thwart the transmission of coronavirus is to wear medical face masks. Monitoring the use of face masks in public places has been a challenge because manual monitoring could be unsafe. This paper proposes an architecture for detecting medical face masks for deployment on resource-constrained endp
Document: The world is going through one of the most dangerous pandemics of all time with the rapid spread of the novel coronavirus (COVID-19). According to the World Health Organisation, the most effective way to thwart the transmission of coronavirus is to wear medical face masks. Monitoring the use of face masks in public places has been a challenge because manual monitoring could be unsafe. This paper proposes an architecture for detecting medical face masks for deployment on resource-constrained endpoints having extremely low memory footprints. A small development board with an ARM Cortex-M7 microcontroller clocked at 480 Mhz and having just 496 KB of framebuffer RAM, has been used for the deployment of the model. Using the TensorFlow Lite framework, the model is quantized to further reduce its size. The proposed model is 138 KB post quantization and runs at the inference speed of 30 FPS.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date