Author: Rees, E. E.; Rodin, R.; Ogden, N. H.
Title: Population surveillance approach to detect and respond to new clusters of COVID-19 Cord-id: 49mcsoo8 Document date: 2021_1_1
ID: 49mcsoo8
Snippet: BACKGROUND: To maintain control of the coronavirus disease 2019 (COVID-19) epidemic as lockdowns are lifted, it will be crucial to enhance alternative public health measures. For surveillance, it will be necessary to detect a high proportion of any new cases quickly so that they can be isolated, and people who have been exposed to them traced and quarantined. Here we introduce a mathematical approach that can be used to determine how many samples need to be collected per unit area and unit time
Document: BACKGROUND: To maintain control of the coronavirus disease 2019 (COVID-19) epidemic as lockdowns are lifted, it will be crucial to enhance alternative public health measures. For surveillance, it will be necessary to detect a high proportion of any new cases quickly so that they can be isolated, and people who have been exposed to them traced and quarantined. Here we introduce a mathematical approach that can be used to determine how many samples need to be collected per unit area and unit time to detect new clusters of COVID-19 cases at a stage early enough to control an outbreak. METHODS: We present a sample size determination method that uses a relative weighted approach. Given the contribution of COVID-19 test results from sub-populations to detect the disease at a threshold prevalence level to control the outbreak to 1) determine if the expected number of weekly samples provided from current healthcare-based surveillance for respiratory virus infections may provide a sample size that is already adequate to detect new clusters of COVID-19 and, if not, 2) to determine how many additional weekly samples were needed from volunteer sampling. RESULTS: In a demonstration of our method at the weekly and Canadian provincial and territorial (P/T) levels, we found that only the more populous P/T have sufficient testing numbers from healthcare visits for respiratory illness to detect COVID-19 at our target prevalence level-assumed to be high enough to identify and control new clusters. Furthermore, detection of COVID-19 is most efficient (fewer samples required) when surveillance focuses on healthcare symptomatic testing demand. In the volunteer populations: the higher the contact rates;the higher the expected prevalence level;and the fewer the samples were needed to detect COVID-19 at a predetermined threshold level. CONCLUSION: This study introduces a targeted surveillance strategy, combining both passive and active surveillance samples, to determine how many samples to collect per unit area and unit time to detect new clusters of COVID-19 cases. The goal of this strategy is to allow for early enough detection to control an outbreak.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date