Author: Pirenne, Laurence; Jakobs, Maximilian A. H.; Jordan, David; Franze, Kristian; Miska, Eric A.
Title: The Orsay Virus as a model for population-wide viral infection dynamics Cord-id: ez5ba7vy Document date: 2021_3_2
ID: ez5ba7vy
Snippet: To this day, epidemics pose a considerable threat to mankind. Experimental models that simulate the spread of infectious diseases are thus crucial to the inception of effective control policies. Current models have had great success incorporating virulence and host immune response but do rarely take host genetics, behavior and host environment into account. Here, we present a full-scale imaging setup that utilizes the infection of the nematode C. elegans with a positive-stranded RNA virus (Orsay
Document: To this day, epidemics pose a considerable threat to mankind. Experimental models that simulate the spread of infectious diseases are thus crucial to the inception of effective control policies. Current models have had great success incorporating virulence and host immune response but do rarely take host genetics, behavior and host environment into account. Here, we present a full-scale imaging setup that utilizes the infection of the nematode C. elegans with a positive-stranded RNA virus (Orsay Virus) to probe key epidemiological parameters and simulate the spread of infection in a whole population. We demonstrate that our system is able to quantify infection levels and host behavior at a high sampling rate and show that different host genetic backgrounds can influence viral spread, while also highlighting the influence of infection on various host behaviors. Future work will allow the isolation of key behavioral and environmental factors that affect viral spread, potentially enabling novel policies to combat the spread of viral infections. Significance Statement In the ongoing COVID-19 pandemic, we struggle to find effective control policies that “stop the spreadâ€. While current animal models of virus spread in populations are highly sophisticated, they rarely explore effects of host behavior and its environment. We developed an experimental animal model system that allows us to visualize virus transmission in whole populations of C. elegans while also measuring behaviors. We were able to demonstrate how C. elegans genetics influences the progression of viral infection in a population and how animals adjust their behavior when infected. In the future, we envision that animal model systems like ours are used to test the effects of viral control policies on viral spread before they are applied in real world scenarios.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date