Selected article for: "ICU ward and real time"

Author: Lopez-Cheda, A.; Jacome, M. A.; Cao, R.; Martinez de Salazar, P.
Title: Estimating COVID-19 hospital demand using a non-parametric model: a case study in Galicia (Spain)
  • Cord-id: hl2j3qc0
  • Document date: 2020_9_5
  • ID: hl2j3qc0
    Snippet: Understanding the demand for hospital beds for COVID-19 patients is key for decision-making and planning mitigation strategies, as overwhelming healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the length-of-stay in the ICU, requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, like the Kaplan-Meier estimator, require
    Document: Understanding the demand for hospital beds for COVID-19 patients is key for decision-making and planning mitigation strategies, as overwhelming healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the length-of-stay in the ICU, requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, like the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients hospitalized, without parametric priors and adjusting for individual covariates. We applied a nonparametric Mixture Cure Model and compared its performance in estimating hospital ward/ICU lengths-of-stay to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and hospital ward length-of-stay estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting ICU occupancy, as well as discharge or death outcomes.

    Search related documents: