Author: Serrano, Will
Title: The Random Neural Network in Price Predictions Cord-id: 904t1wy8 Document date: 2020_5_6
ID: 904t1wy8
Snippet: Everybody likes to make a good prediction, in particular, when some sort of personal investment is involved in terms of finance, energy or time. The difficulty is to make a prediction that optimises the reward obtained from the original contribution; this is even more important when investments are the core service offered by a business or pension fund generated by monthly contributions. The complexity of finance is that the human predictor may have other interests or bias than the human investo
Document: Everybody likes to make a good prediction, in particular, when some sort of personal investment is involved in terms of finance, energy or time. The difficulty is to make a prediction that optimises the reward obtained from the original contribution; this is even more important when investments are the core service offered by a business or pension fund generated by monthly contributions. The complexity of finance is that the human predictor may have other interests or bias than the human investor, the trust between predictor and investor will never be completely established as the investor will never know if the predictor has generated, intentionally or unintentionally, the optimum possible reward. This paper presents the Random Neural Network in recurrent configuration that makes predictions on time series data, specifically, prices. The biological model inspired by the brain structure and neural interconnections makes predictions entirely on previous data from the time series rather than predictions based on several uncorrelated inputs. The model is validated against the property, stock and Fintech market: 1) UK property prices, 2) stock markets indice prices, 3) cryptocurrency prices. Experimental results show that the proposed method makes accurate predictions on different investment portfolios.
Search related documents:
Co phrase search for related documents- accurate prediction and long lstm short term memory network: 1, 2, 3
- accurate prediction and lstm network: 1, 2, 3, 4
- accurate prediction and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9
- accurate prediction and machine artificial intelligence: 1
- accurate prediction and machine artificial intelligence learning: 1
- accurate prediction and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- accurate prediction and machine regression: 1, 2, 3, 4, 5, 6, 7, 8, 9
- activation function and long lstm short term memory: 1, 2
- activation function and lstm short term memory: 1, 2
- activation function and machine learning: 1, 2, 3, 4, 5, 6
- adam optimization algorithm and long lstm short term memory: 1
- adam optimization algorithm and lstm network: 1
- adam optimization algorithm and lstm short term memory: 1
- adam optimization and long lstm short term memory: 1
- adam optimization and lstm network: 1
- adam optimization and lstm short term memory: 1
- long lstm short term memory and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long lstm short term memory and lstm network base: 1
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Co phrase search for related documents, hyperlinks ordered by date