Selected article for: "infected individual and large proportion"

Author: Ahmed, Danish A.; Ansari, Ali R.; Imran, Mudassar; Dingle, Kamal; Bonsall, Michael B.
Title: Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale
  • Cord-id: 48o5blg0
  • Document date: 2021_10_18
  • ID: 48o5blg0
    Snippet: BACKGROUND: To mitigate the spread of the COVID-19 coronavirus, some countries have adopted more stringent non-pharmaceutical interventions in contrast to those widely used. In addition to standard practices such as enforcing curfews, social distancing, and closure of non-essential service industries, other non-conventional policies also have been implemented, such as the total lockdown of fragmented regions, which are composed of sparsely and highly populated areas. METHODS: In this paper, we m
    Document: BACKGROUND: To mitigate the spread of the COVID-19 coronavirus, some countries have adopted more stringent non-pharmaceutical interventions in contrast to those widely used. In addition to standard practices such as enforcing curfews, social distancing, and closure of non-essential service industries, other non-conventional policies also have been implemented, such as the total lockdown of fragmented regions, which are composed of sparsely and highly populated areas. METHODS: In this paper, we model the movement of a host population using a mechanistic approach based on random walks, which are either diffusive or super-diffusive. Infections are realised through a contact process, whereby a susceptible host is infected if in close spatial proximity of the infectious host with an assigned transmission probability. Our focus is on a short-time scale (∼ 3 days), which is the average time lag time before an infected individual becomes infectious. RESULTS: We find that the level of infection remains approximately constant with an increase in population diffusion, and also in the case of faster population dispersal (super-diffusion). Moreover, we demonstrate how the efficacy of imposing a lockdown depends heavily on how susceptible and infectious individuals are distributed over space. CONCLUSION: Our results indicate that on a short-time scale, the type of movement behaviour does not play an important role in rising infection levels. Also, lock-down restrictions are ineffective if the population distribution is homogeneous. However, in the case of a heterogeneous population, lockdowns are effective if a large proportion of infectious carriers are distributed in sparsely populated sub-regions.

    Search related documents:
    Co phrase search for related documents
    • acute respiratory failure and local level national: 1