Author: Raghupathi, Viju; Ren, Jie; Raghupathi, Wullianallur
Title: Studying Public Perception about Vaccination: A Sentiment Analysis of Tweets Cord-id: hu8ydgve Document date: 2020_5_15
ID: hu8ydgve
Snippet: Text analysis has been used by scholars to research attitudes toward vaccination and is particularly timely due to the rise of medical misinformation via social media. This study uses a sample of 9581 vaccine-related tweets in the period 1 January 2019 to 5 April 2019. The time period is of the essence because during this time, a measles outbreak was prevalent throughout the United States and a public debate was raging. Sentiment analysis is applied to the sample, clustering the data into topics
Document: Text analysis has been used by scholars to research attitudes toward vaccination and is particularly timely due to the rise of medical misinformation via social media. This study uses a sample of 9581 vaccine-related tweets in the period 1 January 2019 to 5 April 2019. The time period is of the essence because during this time, a measles outbreak was prevalent throughout the United States and a public debate was raging. Sentiment analysis is applied to the sample, clustering the data into topics using the term frequency–inverse document frequency (TF-IDF) technique. The analyses suggest that most (about 77%) of the tweets focused on the search for new/better vaccines for diseases such as the Ebola virus, human papillomavirus (HPV), and the flu. Of the remainder, about half concerned the recent measles outbreak in the United States, and about half were part of ongoing debates between supporters and opponents of vaccination against measles in particular. While these numbers currently suggest a relatively small role for vaccine misinformation, the concept of herd immunity puts that role in context. Nevertheless, going forward, health experts should consider the potential for the increasing spread of falsehoods that may get firmly entrenched in the public mind.
Search related documents:
Co phrase search for related documents- active audience and machine learning: 1, 2
- active remain and long term research: 1, 2
Co phrase search for related documents, hyperlinks ordered by date