Author: Warwicker, Jim
Title: A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium Cord-id: 4gqaa1hq Document date: 2021_2_4
ID: 4gqaa1hq
Snippet: SARS-CoV-2, causative agent of the COVID-19 pandemic, is thought to release its RNA genome at either the cell surface or within endosomes, the balance being dependent on spike protein stability, and the complement of receptors, co-receptors and proteases. To investigate possible mediators of pH-dependence, pKa calculations have been made on a set of structures for spike protein ectodomain and fragments from SARS-CoV-2 and other coronaviruses. Dominating a heat map of the aggregated predictions,
Document: SARS-CoV-2, causative agent of the COVID-19 pandemic, is thought to release its RNA genome at either the cell surface or within endosomes, the balance being dependent on spike protein stability, and the complement of receptors, co-receptors and proteases. To investigate possible mediators of pH-dependence, pKa calculations have been made on a set of structures for spike protein ectodomain and fragments from SARS-CoV-2 and other coronaviruses. Dominating a heat map of the aggregated predictions, 3 histidine residues in S2 are consistently predicted as destabilising in pre-fusion (all 3) and post-fusion (2 of 3) structures. Other predicted features include the more moderate energetics of surface salt-bridge interactions, and sidechain-mainchain interactions. Two aspartic acid residues in partially buried salt-bridges (D290 – R273 and R355 – D398) have pKas that are calculated to be elevated and destabilising in more open forms of the spike trimer. These aspartic acids are most stabilised in a tightly closed conformation that has been observed when linoleic acid is bound, and which also affects the interactions of D614. The D614G mutation is known to modulate the balance of closed to open trimer. It is suggested that D398 in particular contributes to a pH-dependence of the open/closed equilibrium, potentially coupled to the effects of linoleic acid binding and D614G mutation, and possibly also A570D mutation. These observations are discussed in the context of SARS-CoV-2 infection, mutagenesis studies, and other human coronaviruses.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date