Selected article for: "caspase inhibitor and cell death"

Author: Zhang, Jiyu; Han, Yuru; Shi, Hongyan; Chen, Jianfei; Zhang, Xin; Wang, Xiaobo; Zhou, Ling; Liu, Jianbo; Zhang, Jialin; Ji, Zhaoyang; Jing, Zhaoyang; Ma, Jingyun; Shi, Da; Feng, Li
Title: Swine acute diarrhea syndrome coronavirus-induced apoptosis is caspase- and cyclophilin D- dependent
  • Cord-id: 99d8e6j8
  • Document date: 2020_2_24
  • ID: 99d8e6j8
    Snippet: Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the aetiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. To understand the effect of SADS-CoV on host cells, we characterized the apoptotic pathways and elucidated mechanisms underlying the process of apoptotic cell death after SADS-CoV infection. SADS-CoV-infected cells showed evidence of apoptosis in vitro and in vivo. The use of a pan-caspase inhib
    Document: Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the aetiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. To understand the effect of SADS-CoV on host cells, we characterized the apoptotic pathways and elucidated mechanisms underlying the process of apoptotic cell death after SADS-CoV infection. SADS-CoV-infected cells showed evidence of apoptosis in vitro and in vivo. The use of a pan-caspase inhibitor resulted in the inhibition of SADS-CoV-induced apoptosis and reduction in SADS-CoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, SADS-CoV infection activated the initiators caspase-8 and -9 and upregulated FasL and Bid cleavage, demonstrating a crosstalk between the extrinsic and intrinsic pathways. However, the proapoptotic proteins Bax and Cytochrome c (Cyt c) relocalized to the mitochondria and cytoplasm, respectively, after infection by SADS-CoV. Moreover, Vero E6 and IPI-2I cells treated with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, were completely protected from SADS-CoV-induced apoptosis and viral replication, suggesting the involvement of cyclophilin D (CypD) in these processes. Altogether, our results indicate that caspase-dependent FasL (extrinsic)- and mitochondria (intrinsic)- mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis that facilitates viral replication. In summary, these findings demonstrate mechanisms by which SADS-CoV induces apoptosis and improve our understanding of SADS-CoV pathogenesis.

    Search related documents:
    Co phrase search for related documents
    • absence presence and activation mediate: 1, 2
    • absence presence and activation processing: 1
    • absence presence and acute severe: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • absence presence and additional evidence: 1
    • absence presence and low molecular weight: 1, 2, 3
    • activate effector and acute severe: 1
    • activate form and acute severe: 1
    • activation mediate and acute severe: 1
    • activation processing and acute severe: 1, 2, 3, 4
    • acute severe and additional evidence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute severe and long functional: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    • acute severe and low molecular weight: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • additional evidence and long functional: 1
    • additional evidence and low molecular weight: 1