Selected article for: "accurate prediction and machine learning method"

Author: Theerthagiri, Prasannavenkatesan; Vidya, J
Title: Cardiovascular Disease Prediction using Recursive Feature Elimination and Gradient Boosting Classification Techniques
  • Cord-id: 7sanu505
  • Document date: 2021_6_11
  • ID: 7sanu505
    Snippet: Cardiovascular diseases (CVDs) are one of the most common chronic illnesses that affect peoples health. Early detection of CVDs can reduce mortality rates by preventing or reducing the severity of the disease. Machine learning algorithms are a promising method for identifying risk factors. This paper proposes a proposed recursive feature elimination-based gradient boosting (RFE-GB) algorithm in order to obtain accurate heart disease prediction. The patients health record with important CVD featu
    Document: Cardiovascular diseases (CVDs) are one of the most common chronic illnesses that affect peoples health. Early detection of CVDs can reduce mortality rates by preventing or reducing the severity of the disease. Machine learning algorithms are a promising method for identifying risk factors. This paper proposes a proposed recursive feature elimination-based gradient boosting (RFE-GB) algorithm in order to obtain accurate heart disease prediction. The patients health record with important CVD features has been analyzed for the evaluation of the results. Several other machine learning methods were also used to build the prediction model, and the results were compared with the proposed model. The results of this proposed model infer that the combined recursive feature elimination and gradient boosting algorithm achieves the highest accuracy (89.7 %). Further, with an area under the curve of 0.84, the proposed RFE-GB algorithm was found superior and had obtained a substantial gain over other techniques. Thus, the proposed RFE-GB algorithm will serve as a prominent model for CVD estimation and treatment.

    Search related documents:
    Co phrase search for related documents