Author: J'unior, M. L. Pereira; Junior, R. T. de Sousa; Nze, G. D. Amvame; Giozza, W. F.; J'unior, L. A. Ribeiro
Title: Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study Cord-id: 93v2lzcc Document date: 2021_2_25
ID: 93v2lzcc
Snippet: Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. Here, we performed a molecular docking study to propose potential candidates to prevent the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol).
Document: Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. Here, we performed a molecular docking study to propose potential candidates to prevent the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date