Author: Ahmed, S.; Yap, M. H.; Tan, M.; Hasan, M. K.
Title: ReCoNet: Multi-level Preprocessing of Chest X-rays for COVID-19 Detection Using Convolutional Neural Networks Cord-id: 33bcw2w0 Document date: 2020_7_11
ID: 33bcw2w0
Snippet: Life-threatening COVID-19 detection from radiomic features has become a dire need of the present time for infection control and socio-economic crisis management around the world. In this paper, a novel convolutional neural network (CNN) architecture, ReCoNet (residual image-based COVID-19 detection network), is proposed for COVID-19 detection. This is achieved from chest X-ray (CXR) images shedding light on the preprocessing task considered to be very useful for enhancing the COVID-19 fingerprin
Document: Life-threatening COVID-19 detection from radiomic features has become a dire need of the present time for infection control and socio-economic crisis management around the world. In this paper, a novel convolutional neural network (CNN) architecture, ReCoNet (residual image-based COVID-19 detection network), is proposed for COVID-19 detection. This is achieved from chest X-ray (CXR) images shedding light on the preprocessing task considered to be very useful for enhancing the COVID-19 fingerprints. The proposed modular architecture consists of a CNN-based multi-level preprocessing filter block in cascade with a multi-layer CNN-based feature extractor and a classification block. A multi-task learning loss function is adopted for optimization of the preprocessing block trained end-to-end with the rest of the proposed network. Additionally, a data augmentation technique is applied for boosting the network performance. The whole network when pre-trained end-to-end on the CheXpert open source dataset, and trained and tested with the COVIDx dataset of 15,134 original CXR images yielded an overall benchmark accuracy, sensitivity, and specificity of 97.48%, 96.39%, and 97.53%, respectively. The immense potential of ReCoNet may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle income countries where RT-PCR labs and/or kits are in a serious crisis.
Search related documents:
Co phrase search for related documents- loss function and low number: 1
- loss function and lstm short term memory: 1, 2, 3, 4
- loss function and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- loss function and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and lung imaging: 1
- loss function and lung region: 1
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- low number and lung disease: 1, 2, 3, 4
- low number and lung imaging: 1
- low number and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- lstm short term memory and lung disease: 1, 2, 3
- lstm short term memory and lung imaging: 1, 2
- lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- lung cancer and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- lung disease and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
- lung disease diagnose and machine learning: 1, 2
- lung disease diagnosis and machine learning: 1, 2, 3, 4, 5
- lung imaging and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- lung region and machine learning: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date