Author: Chand, Gyanendra Bahadur; Banerjee, Atanu; Azad, Gajendra Kumar
                    Title: Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure  Cord-id: 3pribklz  Document date: 2020_5_11
                    ID: 3pribklz
                    
                    Snippet: The rapid development of SARS-CoV-2 mediated COVID-19 pandemic has been the cause of significant health concern, highlighting the immediate need for the effective antivirals. SARS-CoV-2 is an RNA virus that has an inherent high mutation rate. These mutations drive viral evolution and genome variability, thereby, facilitating viruses to have rapid antigenic shifting to evade host immunity and to develop drug resistance. Viral RNA-dependent RNA polymerases (RdRp) perform viral genome duplication a
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: The rapid development of SARS-CoV-2 mediated COVID-19 pandemic has been the cause of significant health concern, highlighting the immediate need for the effective antivirals. SARS-CoV-2 is an RNA virus that has an inherent high mutation rate. These mutations drive viral evolution and genome variability, thereby, facilitating viruses to have rapid antigenic shifting to evade host immunity and to develop drug resistance. Viral RNA-dependent RNA polymerases (RdRp) perform viral genome duplication and RNA synthesis. Therefore, we compared the available RdRp sequences of SARS-CoV-2 from Indian isolates and ‘Wuhan wet sea food market virus’ sequence to identify, if any, variation between them. We report seven mutations observed in Indian SARS-CoV-2 isolates and three unique mutations that showed changes in the secondary structure of the RdRp protein at region of mutation. We also studied molecular dynamics using normal mode analyses and found that these mutations alter the stability of RdRp protein. Therefore, we propose that RdRp mutations in Indian SARS-CoV-2 isolates might have functional consequences that can interfere with RdRp targeting pharmacological agents.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date