Selected article for: "RT PCR reaction and supernatant Îl"

Author: Fukuda, Masahiro; Islam, M. Saidul; Shimizu, Ryo; Nassar, Hesham; Rabin, Nurun Nahar; Takahashi, Yukie; Sekine, Yoshihiro; Lindoy, Leonard F.; Fukuda, Takaichi; Ikeda, Terumasa; Hayami, Shinya
Title: Lethal Interactions of SARS-CoV-2 with Graphene Oxide: Implications for COVID-19 Treatment
  • Cord-id: 9lhw12c4
  • Document date: 2021_10_14
  • ID: 9lhw12c4
    Snippet: [Image: see text] The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SAR
    Document: [Image: see text] The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 μg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1