Selected article for: "RNA bind and wild type"

Author: Peng, D; Koetzner, C A; Masters, P S
Title: Analysis of second-site revertants of a murine coronavirus nucleocapsid protein deletion mutant and construction of nucleocapsid protein mutants by targeted RNA recombination.
  • Cord-id: 9wq4bp5k
  • Document date: 1995_1_1
  • ID: 9wq4bp5k
    Snippet: The Alb4 mutant of the coronavirus mouse hepatitis virus (MHV) is both temperature sensitive and thermolabile owing to a deletion in the gene encoding its nucleocapsid (N) protein. The deletion removes 29 amino acids that constitute a putative spacer region preceding the carboxyl-terminal domain of the protein. As a step toward understanding the structure and function of the MHV N protein, we isolated multiple independent revertants of Alb4 that totally or partially regained the ability to form
    Document: The Alb4 mutant of the coronavirus mouse hepatitis virus (MHV) is both temperature sensitive and thermolabile owing to a deletion in the gene encoding its nucleocapsid (N) protein. The deletion removes 29 amino acids that constitute a putative spacer region preceding the carboxyl-terminal domain of the protein. As a step toward understanding the structure and function of the MHV N protein, we isolated multiple independent revertants of Alb4 that totally or partially regained the ability to form large (wild-type-sized) plaques at the nonpermissive temperature. The N proteins of these revertant viruses concomitantly regained the ability to bind to RNA in vitro at a temperature that was restrictive for RNA binding by Alb4 N protein. Sequence analysis of the N genes of the revertants revealed that each contained a single second-site point mutation that compensated for the effects of the deletion. All reverting mutations were clustered within a stretch of 40 amino acids centered some 80 residues on the amino side of the Alb4 deletion, within a domain to which the RNA-binding activity of N had been previously mapped. By means of a targeted RNA recombination method that we have recently developed, two of the reverting mutations were introduced into a wild-type MHV genomic background. The resulting recombinants were stable and showed no gross phenotypic differences from the wild type. A detailed analysis of one, however, revealed that it was at a selective disadvantage with respect to the wild type.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date