Selected article for: "Coronavirus pandemic and distribution pattern"

Author: Budak, Ümit; Çıbuk, Musa; Cömert, Zafer; Şengür, Abdulkadir
Title: Efficient COVID-19 Segmentation from CT Slices Exploiting Semantic Segmentation with Integrated Attention Mechanism
  • Cord-id: 9yd14gw6
  • Document date: 2021_3_5
  • ID: 9yd14gw6
    Snippet: Coronavirus (COVID-19) is a pandemic, which caused suddenly unexplained pneumonia cases and caused a devastating effect on global public health. Computerized tomography (CT) is one of the most effective tools for COVID-19 screening. Since some specific patterns such as bilateral, peripheral, and basal predominant ground-glass opacity, multifocal patchy consolidation, crazy-paving pattern with a peripheral distribution can be observed in CT images and these patterns have been declared as the find
    Document: Coronavirus (COVID-19) is a pandemic, which caused suddenly unexplained pneumonia cases and caused a devastating effect on global public health. Computerized tomography (CT) is one of the most effective tools for COVID-19 screening. Since some specific patterns such as bilateral, peripheral, and basal predominant ground-glass opacity, multifocal patchy consolidation, crazy-paving pattern with a peripheral distribution can be observed in CT images and these patterns have been declared as the findings of COVID-19 infection. For patient monitoring, diagnosis and segmentation of COVID-19, which spreads into the lung, expeditiously and accurately from CT, will provide vital information about the stage of the disease. In this work, we proposed a SegNet-based network using the attention gate (AG) mechanism for the automatic segmentation of COVID-19 regions in CT images. AGs can be easily integrated into standard convolutional neural network (CNN) architectures with a minimum computing load as well as increasing model precision and predictive accuracy. Besides, the success of the proposed network has been evaluated based on dice, Tversky, and focal Tversky loss functions to deal with low sensitivity arising from the small lesions. The experiments were carried out using a fivefold cross-validation technique on a COVID-19 CT segmentation database containing 473 CT images. The obtained sensitivity, specificity, and dice scores were reported as 92.73%, 99.51%, and 89.61%, respectively. The superiority of the proposed method has been highlighted by comparing with the results reported in previous studies and it is thought that it will be an auxiliary tool that accurately detects automatic COVID-19 regions from CT images.

    Search related documents:
    Co phrase search for related documents
    • accuracy score and acute respiratory illness: 1
    • accuracy score and loss function: 1, 2
    • accuracy score and lung region: 1, 2, 3
    • accuracy score and lung region extraction: 1, 2
    • acute ards respiratory distress syndrome and localization model: 1
    • acute ards respiratory distress syndrome and loss contribute: 1
    • acute ards respiratory distress syndrome and loss function: 1, 2, 3, 4, 5, 6, 7, 8
    • acute ards respiratory distress syndrome and lung region: 1, 2, 3, 4, 5
    • acute respiratory illness and loss function: 1
    • localization model and loss function: 1, 2
    • loss function and lung region: 1