Author: Zhou, Yichao; Jiang, Jyun-yu; Chen, Xiusi; Wang, Wei
Title: #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on Spatial-temporal Dynamic Graphs Cord-id: 9yqlmnby Document date: 2021_8_8
ID: 9yqlmnby
Snippet: COVID-19 has caused lasting damage to almost every domain in public health, society, and economy. To monitor the pandemic trend, existing studies rely on the aggregation of traditional statistical models and epidemic spread theory. In other words, historical statistics of COVID-19, as well as the population mobility data, become the essential knowledge for monitoring the pandemic trend. However, these solutions can barely provide precise prediction and satisfactory explanations on the long-term
Document: COVID-19 has caused lasting damage to almost every domain in public health, society, and economy. To monitor the pandemic trend, existing studies rely on the aggregation of traditional statistical models and epidemic spread theory. In other words, historical statistics of COVID-19, as well as the population mobility data, become the essential knowledge for monitoring the pandemic trend. However, these solutions can barely provide precise prediction and satisfactory explanations on the long-term disease surveillance while the ubiquitous social media resources can be the key enabler for solving this problem. For example, serious discussions may occur on social media before and after some breaking events take place. These events, such as marathon and parade, may impact the spread of the virus. To take advantage of the social media data, we propose a novel framework, Social Media enhAnced pandemic suRveillance Technique (SMART), which is composed of two modules: (i) information extraction module to construct heterogeneous knowledge graphs based on the extracted events and relationships among them; (ii) time series prediction module to provide both short-term and long-term forecasts of the confirmed cases and fatality at the state-level in the United States and to discover risk factors for COVID-19 interventions. Extensive experiments show that our method largely outperforms the state-of-the-art baselines by 7.3% and 7.4% in confirmed case/fatality prediction, respectively.
Search related documents:
Co phrase search for related documents- absolute error and additive model: 1
- absolute error and location time: 1, 2, 3
- absolute error and location wise: 1
- absolute error and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and long term forecast: 1
- absolute error and long term prediction: 1, 2, 3, 4
- absolute error and long term short term: 1, 2, 3, 4
- absolute error and long term short term trend: 1
- absolute error and lstm model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- absolute error and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning statistical: 1
- absolute error and machine learning statistical models: 1
- absolute error and mae represent: 1
- absolute percentage smape error and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date