Author: Hariharan, Ramya
Title: Random forest regression analysis on combined role of meteorological indicators in disease dissemination in an Indian city: A case study of New Delhi Cord-id: jix9jek9 Document date: 2021_1_22
ID: jix9jek9
Snippet: Meteorological parameters show a strong influence on disease transmission in urban localities. The combined influence of factors such as daily mean temperature, absolute humidity and average wind speed on the attack rate and mortality rate of COVID-19 rise in Delhi, India has been investigated in this case study. A Random forest regression algorithm has been utilized to compare the epidemiological and meteorological parameters. The performance of the model has been evaluated using statistical pe
Document: Meteorological parameters show a strong influence on disease transmission in urban localities. The combined influence of factors such as daily mean temperature, absolute humidity and average wind speed on the attack rate and mortality rate of COVID-19 rise in Delhi, India has been investigated in this case study. A Random forest regression algorithm has been utilized to compare the epidemiological and meteorological parameters. The performance of the model has been evaluated using statistical performance metrics. The random forest model shows a strong positive correlation between the predictor parameters on the attack rate (96.09%) and mortality rate (93.85%). On both the response variables, absolute humidity has been noted to be the variable of highest influence. In addition, both temperature and wind speed have shown moderate positive influence on the transmission and survival of coronavirus during the study period. The synergistic effect of absolute humidity with temperature and wind speed contributing towards the increase in the attack and mortality rate has been addressed. The inhibition to respiratory droplet evaporation, increment in droplet size due to hygroscopic effect and the enhanced duration of survival of coronavirus borne in respiratory droplets are attributed to the increase in coronavirus infection under the observed weather conditions.
Search related documents:
Co phrase search for related documents- acute respiratory and low humidity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute respiratory and low humidity low temperature: 1, 2, 3
- acute respiratory and low temperature: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- acute respiratory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- acute respiratory syndrome coronavirus and low humidity: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory syndrome coronavirus and low humidity low temperature: 1
- acute respiratory syndrome coronavirus and low temperature: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory syndrome coronavirus and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome coronavirus and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- low mean absolute error and mae low mean absolute error: 1, 2, 3, 4
- low temperature and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date