Author: Alwawi, B. K. O. C.; Abood, L. H.
Title: Convolution neural network and histogram equalization for COVID-19 diagnosis system Cord-id: 8eomaw0o Document date: 2021_1_1
ID: 8eomaw0o
Snippet: The coronavirus disease-2019 (COVID-19) is spreading quickly and globally as a pandemic and is the biggest problem facing humanity nowadays. The medical resources have become insufficient in many areas. The importance of the fast diagnosis of the positive cases is increasing to prevent further spread of this pandemic. In this study, the deep learning technology for COVID-19 dataset expansion and detection model is proposed. In the first stage of proposed model, COVID-19 dataset as chest X-ray im
Document: The coronavirus disease-2019 (COVID-19) is spreading quickly and globally as a pandemic and is the biggest problem facing humanity nowadays. The medical resources have become insufficient in many areas. The importance of the fast diagnosis of the positive cases is increasing to prevent further spread of this pandemic. In this study, the deep learning technology for COVID-19 dataset expansion and detection model is proposed. In the first stage of proposed model, COVID-19 dataset as chest X-ray images were collected and pre-processed, followed by expanding the data using data augmentation, enhancement by image processing and histogram equalization techniuque. While in the second stage of this model, a new convolution neural network (CNN) architecture was built and trained to diagnose the COVID-19 dataset as a COVID-19 (infected) or normal (uninfected) case. Whereas, a graphical user interface (GUI) using with Tkinter was designed for the proposed COVID-19 detection model. Training simulations are carried out online on using Google colaboratory based graphics prossesing unit (GPU). The proposed model has successfully classified COVID-19 with accuracy of the training model is 93.8% for training dataset and 92.1% for validating dataset and reached to the targeted point with minimum epoch's number to train this model with satisfying results. © 2021 Institute of Advanced Engineering and Science. All rights reserved.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date