Author: Pientka, Brigitte; Schöpp, Ulrich
Title: Semantical Analysis of Contextual Types Cord-id: jvqt5udt Document date: 2020_4_17
ID: jvqt5udt
Snippet: We describe a category-theoretic semantics for a simply typed variant of Cocon, a contextual modal type theory where the box modality mediates between the weak function space that is used to represent higher-order abstract syntax (HOAS) trees and the strong function space that describes (recursive) computations about them. What makes Cocon different from standard type theories is the presence of first-class contexts and contextual objects to describe syntax trees that are closed with respect to
Document: We describe a category-theoretic semantics for a simply typed variant of Cocon, a contextual modal type theory where the box modality mediates between the weak function space that is used to represent higher-order abstract syntax (HOAS) trees and the strong function space that describes (recursive) computations about them. What makes Cocon different from standard type theories is the presence of first-class contexts and contextual objects to describe syntax trees that are closed with respect to a given context of assumptions. Following M. Hofmann’s work, we use a presheaf model to characterise HOAS trees. Surprisingly, this model already provides the necessary structure to also model Cocon. In particular, we can capture the contextual objects of Cocon using a comonad [Formula: see text] that restricts presheaves to their closed elements. This gives a simple semantic characterisation of the invariants of contextual types (e.g. substitution invariance) and identifies Cocon as a type-theoretic syntax of presheaf models. We express our category-theoretic constructions by using a modal internal type theory that is implemented in Agda-Flat.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date