Author: Di, Da; Dileepan, Mythili; Ahmed, Shamim; Liang, Yuying; Ly, Hinh
Title: Recombinant SARS-CoV-2 Nucleocapsid Protein: Expression, Purification, and Its Biochemical Characterization and Utility in Serological Assay Development to Assess Immunological Responses to SARS-CoV-2 Infection Cord-id: 6wx2c4ws Document date: 2021_8_16
ID: 6wx2c4ws
Snippet: The SARS-CoV-2 nucleocapsid protein (N) binds a single-stranded viral RNA genome to form a helical ribonucleoprotein complex that is packaged into virion particles. N is relatively conserved among coronaviruses and consists of the N-terminal domain (NTD) and C-terminal domain (CTD), which are flanked by three disorganized regions. N is highly immunogenic and has been widely used to develop a serological assay as a diagnostic tool for COVID-19 infection, although there is a concern that the natur
Document: The SARS-CoV-2 nucleocapsid protein (N) binds a single-stranded viral RNA genome to form a helical ribonucleoprotein complex that is packaged into virion particles. N is relatively conserved among coronaviruses and consists of the N-terminal domain (NTD) and C-terminal domain (CTD), which are flanked by three disorganized regions. N is highly immunogenic and has been widely used to develop a serological assay as a diagnostic tool for COVID-19 infection, although there is a concern that the natural propensity of N to associate with RNA might compromise the assay’s specificity. We expressed and purified from bacterial cells two recombinant forms of SARS-CoV-2 N, one from the soluble fraction of bacterial cell lysates that is strongly associated with bacterial RNAs and the other that is completely devoid of RNAs. We showed that both forms of N can be used to develop enzyme-linked immunosorbent assays (ELISAs) for the specific detection of human and mouse anti-N monoclonal antibodies (mAb) as well as feline SARS-CoV-2 seropositive serum samples, but that the RNA-free form of N exhibits a slightly higher level of sensitivity than the RNA-bound form to react to anti-N mouse mAb. Using the electrophoretic mobility shift assay (EMSA), we also showed that N preferentially binds ssRNA in a sequence-independent manner and that both NTD and CTD of N contribute to RNA-binding activity. Collectively, our study describes methods to express, purify, and biochemically characterize the SARS-CoV-2 N protein and to use it for the development of serological assays to detect SARS-CoV-2 infection.
Search related documents:
Co phrase search for related documents- accession number and additional sequence: 1, 2
- accessory protein and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and additional sequence: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome and adenoviral vector: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute respiratory syndrome and low magnitude: 1
- acute respiratory syndrome and low molecular weight: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and low temperature: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- adenoviral vector and low molecular weight: 1
Co phrase search for related documents, hyperlinks ordered by date