Selected article for: "antiviral immunity and IFN induction"

Author: Feng, Qian; Langereis, Martijn A.; van Kuppeveld, Frank J.M.
Title: Induction and suppression of innate antiviral responses by picornaviruses
  • Cord-id: 8n0jafsk
  • Document date: 2014_7_18
  • ID: 8n0jafsk
    Snippet: The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and foot-and-mouth disease virus. Picornavirus infections activate a cytosolic RNA sensor, MDA5, which in turn, induces a type I interferon response, a crucial component of antiviral immunity. Moreover, picorn
    Document: The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and foot-and-mouth disease virus. Picornavirus infections activate a cytosolic RNA sensor, MDA5, which in turn, induces a type I interferon response, a crucial component of antiviral immunity. Moreover, picornaviruses activate the formation of stress granules (SGs), large aggregates of preassembled mRNPs (messenger ribonucleoprotein particles) to temporarily store these molecules upon cellular stress. Meanwhile, picornaviruses actively suppress these antiviral responses to ensure efficient replication. In this review we provide an overview of the induction and suppression of the MDA5-mediated IFN-α/β response and the cellular stress pathway by picornaviruses.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1