Author: Ravenscroft, James; Cattan, Arie; Clare, Amanda; Dagan, Ido; Liakata, Maria
                    Title: CD2CR: Co-reference Resolution Across Documents and Domains  Cord-id: k5qmwhuw  Document date: 2021_1_29
                    ID: k5qmwhuw
                    
                    Snippet: Cross-document co-reference resolution (CDCR) is the task of identifying and linking mentions to entities and concepts across many text documents. Current state-of-the-art models for this task assume that all documents are of the same type (e.g. news articles) or fall under the same theme. However, it is also desirable to perform CDCR across different domains (type or theme). A particular use case we focus on in this paper is the resolution of entities mentioned across scientific work and newspa
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Cross-document co-reference resolution (CDCR) is the task of identifying and linking mentions to entities and concepts across many text documents. Current state-of-the-art models for this task assume that all documents are of the same type (e.g. news articles) or fall under the same theme. However, it is also desirable to perform CDCR across different domains (type or theme). A particular use case we focus on in this paper is the resolution of entities mentioned across scientific work and newspaper articles that discuss them. Identifying the same entities and corresponding concepts in both scientific articles and news can help scientists understand how their work is represented in mainstream media. We propose a new task and English language dataset for cross-document cross-domain co-reference resolution (CD$^2$CR). The task aims to identify links between entities across heterogeneous document types. We show that in this cross-domain, cross-document setting, existing CDCR models do not perform well and we provide a baseline model that outperforms current state-of-the-art CDCR models on CD$^2$CR. Our data set, annotation tool and guidelines as well as our model for cross-document cross-domain co-reference are all supplied as open access open source resources.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date