Author: Heinzelman, Pete; Romero, Philip A.
Title: Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein Cord-id: 8shjwv6j Document date: 2020_9_17
ID: 8shjwv6j
Snippet: Understanding how human ACE2 genetic variants differ in their recognition by SARS-CoV-2 can have a major impact in leveraging ACE2 as an axis for treating and preventing COVID-19. In this work, we experimentally interrogate thousands of ACE2 mutants to identify over one hundred human single-nucleotide variants (SNVs) that are likely to have altered recognition by the virus, and make the complementary discovery that ACE2 residues distant from the spike interface can have a strong influence upon t
Document: Understanding how human ACE2 genetic variants differ in their recognition by SARS-CoV-2 can have a major impact in leveraging ACE2 as an axis for treating and preventing COVID-19. In this work, we experimentally interrogate thousands of ACE2 mutants to identify over one hundred human single-nucleotide variants (SNVs) that are likely to have altered recognition by the virus, and make the complementary discovery that ACE2 residues distant from the spike interface can have a strong influence upon the ACE2-spike interaction. These findings illuminate new links between ACE2 sequence and spike recognition, and will find wide-ranging utility in SARS-CoV-2 fundamental research, epidemiological analyses, and clinical trial design.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date