Author: Garafutdinov, Ravil R; Sakhabutdinova, Assol R; Kamalov, Marat I; Salakhieva, Diana V; Mavzyutov, Ayrat R
                    Title: INHIBITION OF NONSPECIFIC POLYMERASE ACTIVITY USING POLY(ASPARTIC) ACID AS A MODEL ANIONIC POLYELECTROLYTE.  Cord-id: ao0p0xcx  Document date: 2021_6_2
                    ID: ao0p0xcx
                    
                    Snippet: DNA polymerases with strand-displacement activity allow to amplify nucleic acids under isothermal conditions but often lead to undesirable by-products. Here, we report the increase of specificity of isothermal amplification in the presence of poly(aspartic) acids (pAsp). We hypothesized that side reactions occur due to the binding of the phosphate backbone of synthesized DNA strands with surface amino groups of the polymerase, and weakly acidic polyelectrolytes could shield polymerase molecules 
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: DNA polymerases with strand-displacement activity allow to amplify nucleic acids under isothermal conditions but often lead to undesirable by-products. Here, we report the increase of specificity of isothermal amplification in the presence of poly(aspartic) acids (pAsp). We hypothesized that side reactions occur due to the binding of the phosphate backbone of synthesized DNA strands with surface amino groups of the polymerase, and weakly acidic polyelectrolytes could shield polymerase molecules from DNA and thereby inhibit nonspecific amplification. Suppression of nonspecific polymerase activity by pAsp was studied on multimerization as a model side reaction. It was found that a low concentration of pAsp (0.01%) provides successful amplification of specific DNA targets. The inhibitory effect of pAsp is due to its polymeric structure since aspartic acid did affect neither specific nor nonspecific amplification. Strongly acidic polyelectrolyte heparin does not possess the same selectivity since it suppresses any DNA synthesis. The applicability of pAsp to prevent nonspecific reactions and reliable detection of the specific target has been demonstrated on the genetic material of SARS-CoV-2 coronavirus using Loop-mediated isothermal amplification.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date