Author: Nasiri, E.; Milanova, M.; Nasiri, A.
Title: Video surveillance framework based on real-time face mask detection and recognition Cord-id: aon067lx Document date: 2021_1_1
ID: aon067lx
Snippet: In this paper we proposed a real-time face mask detection and recognition for CCTV surveillance camera videos. The proposed work consists of six steps: video acquisition and keyframes selection, data augmentation, facial parts segmentation, pixel-based feature extraction, Bag of Visual Words (BoVW) generation, face mask detection, and face recognition. In the first step, a set of keyframes are selected using histogram of gradient (HoG) algorithm. Secondly, data augmentation is involved with thre
Document: In this paper we proposed a real-time face mask detection and recognition for CCTV surveillance camera videos. The proposed work consists of six steps: video acquisition and keyframes selection, data augmentation, facial parts segmentation, pixel-based feature extraction, Bag of Visual Words (BoVW) generation, face mask detection, and face recognition. In the first step, a set of keyframes are selected using histogram of gradient (HoG) algorithm. Secondly, data augmentation is involved with three steps as color normalization, illumination correction (CLAHE), and poses normalization (Angular Affine Transformation). In third step, facial parts are segmented using clustering approach i.e. Expectation Maximization with Gaussian Mixture Model (EM-GMM), in which facial regions are segmented into Eyes, Nose, Mouth, Chin, and Forehead. Then, Pixel-based Feature Extraction is performed using Yolo Nano approach, which performance is higher and lightweight model than the Yolo Tiny V2 and Yolo Tiny V3, and extracted features are constructed into Codebook by Hassanat Similarity with K-Nearest neighbor (H-M with KNN) algorithm. For mask detection, L2 distance function is used. The final step is face recognition which is implemented by a Kernel-based Extreme Learning Machine with Slime Mould Optimization (SMO). Experiments conducted using Python IDLE 3.8 for the proposed Yolo Nano model and also previous works as GMM with Deep learning (GMM+DL), Convolutional Neural Network (CNN) with VGGF, Yolo Tiny V2, and Yolo Tiny V3 in terms of various performance metrics. © 2021 IEEE.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date