Author: Wu, Zhou; Deshpande, Tushar; Henning, Lukas; Bedner, Peter; Seifert, Gerald; Steinhäuser, Christian
Title: Cell death of hippocampal CA1 astrocytes during early epileptogenesis. Cord-id: ajdrwu2f Document date: 2021_5_6
ID: ajdrwu2f
Snippet: OBJECTIVE Growing evidence suggests that dysfunctional astrocytes are crucial players in the development of mesial temporal lobe epilepsy (MTLE). Using a mouse model closely recapitulating key alterations of chronic human MTLE with hippocampal sclerosis, here we asked whether death of astrocytes contributes to the initiation of the disease and investigated potential underlying molecular mechanisms. METHODS Antibody staining was combined with confocal imaging and semiquantitative real-time polyme
Document: OBJECTIVE Growing evidence suggests that dysfunctional astrocytes are crucial players in the development of mesial temporal lobe epilepsy (MTLE). Using a mouse model closely recapitulating key alterations of chronic human MTLE with hippocampal sclerosis, here we asked whether death of astrocytes contributes to the initiation of the disease and investigated potential underlying molecular mechanisms. METHODS Antibody staining was combined with confocal imaging and semiquantitative real-time polymerase chain reaction analysis to identify markers of different cellular death mechanisms between 4 h and 3 days after epilepsy induction. RESULTS Four hours after kainate-mediated induction of status epilepticus (SE), we found a significant reduction in the density of astrocytes in the CA1 stratum radiatum (SR) of the ipsilateral hippocampus. This reduction was transient, as within the next 3 days, astrocyte cell numbers recovered to the initial values, which was accompanied by enhanced proliferation. Four hours after SE induction, a small proportion of astrocytes in the ipsilateral CA1 SR expressed autophagy-related genes and proteins, whereas we did not find astrocytes positive for cleaved caspase 3 or terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling, ruling out apoptosis-related astrocytic death. Importantly, at the same early time point post-SE, many astrocytes in the ipsilateral CA1 SR showed strong expression of genes encoding pro-necroptosis factors, including receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Phosphorylation of MLKL (pMLKL), formation of necrosome complexes composed of RIPK3 and pMLKL, and translocation of pMLKL to the nucleus and to the plasma membrane were often observed in astrocytes of the ipsilateral hippocampus 4 h post-SE. SIGNIFICANCE The present study revealed that astrocytes die shortly after induction of SE. Our expression data and immunohistochemistry suggest that necroptosis and autophagy contribute to astrocytic death. These findings help to better understand how dysfunctional and pathological remodeling of astrocytes contributes to the initiation of temporal lobe epilepsy.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date