Selected article for: "control group and rat lung"

Author: Herrera, Arturo Solís; Beeraka, Narasimha M; Sinelnikov, Mikhail Y; Nikolenko, Vladimir N; Giller, Dimitry B; Solis, Luis Fernando Torres; Mikhaleva, Liudmila M; Somasundaram, Siva G; Kirkland, Cecil E; Aliev, Gjumrakch
Title: The Beneficial Effects of QIAPI 1® against Pentavalent Arsenic-Induced Lung Toxicity a Hypothetical Model for SARS CoV2-Induced Lung Toxicity.
  • Cord-id: 53ydaogb
  • Document date: 2021_4_12
  • ID: 53ydaogb
    Snippet: Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy again
    Document: Exposure to environmental toxicants such as Arsenic (As) can result in As-induced alterations in immune regulators. Consequently, people who are more prone to viral infections like influenza A or B, H1N1, SARS CoV (Severe Acute Respiratory Syndrome Coronavirus), and SARS CoV2 may develop susceptibility to immune responses in their lungs because our previous reports delineated the ability of QIAPI 1®, a melanin precursor, to dissociate water molecules with simultaneous therapeutic efficacy against central nervous system (CNS) diseases, retinopathy, and As-induced renal toxicity. Given the commonalities of lung pathology of SARS CoV and As-induced toxicity, the aim of this study is to decipher the efficacy of QIAPI 1® against pentavalent As-induced lung toxicity by examining the pulmonary pathology. Hematoxylin & Eosin (H&E) staining was used for ascertaining the lung pathology in Wistar rat models. Animals were divided into 3 groups: control group, group treated with pentavalent As, and a group treated with pentavalent As and QIAPI 1®. There were no significant changes in lung histopathology in the control group as indicated by intact morphology. As-treated group revealed damage to the histoarchitecture with pulmonary edema, interstitial fibrosis, diffuse alveolar damage, Bronchiolitis obliterans organizing pneumonia (BOOP)-lesions, formation of hyaline membrane, multinucleated giant pneumocytes, atypical pneumocytes, inflammatory cell infiltration, and interstitial edema. The group treated with As and QIAPI 1® significantly associated with mitigated histological signs of lung inflammation induced by Arsenic. Therefore, QIAPI 1® can be recommended as antagonistic to As-induced lung toxicity. In conclusion, this model could be preferred as a hypothetical model to examine the efficacy of QIAPI 1® in SARS CoV2-induced pulmonary damage. Future studies are warranted to delineate the efficacy of QIAPI 1® against SARS CoV and SARS CoV2 lung pathology.

    Search related documents:
    Co phrase search for related documents