Author: Saha, Prottoy; Sadi, Muhammad Sheikh; Aranya, O.F.M. Riaz Rahman; Jahan, Sadia; Islam, Ferdib-Al
Title: COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning Cord-id: autrxc67 Document date: 2021_9_17
ID: autrxc67
Snippet: Coronavirus (COVID-19) has been one of the most dangerous and acute deadly diseases across the world recently. Researchers are trying to develop automated and feasible COVID-19 detection systems with the help of deep neural networks, machine learning techniques, etc. In this paper, a deep learning-based COVID-19 detection system called COV-VGX is proposed that contributes to detecting coronavirus disease automatically using chest X-ray images. The system introduces two types of classifiers, name
Document: Coronavirus (COVID-19) has been one of the most dangerous and acute deadly diseases across the world recently. Researchers are trying to develop automated and feasible COVID-19 detection systems with the help of deep neural networks, machine learning techniques, etc. In this paper, a deep learning-based COVID-19 detection system called COV-VGX is proposed that contributes to detecting coronavirus disease automatically using chest X-ray images. The system introduces two types of classifiers, namely, a multiclass classifier that automatically predicts coronavirus, pneumonia, and normal classes and a binary classifier that predicts coronavirus and pneumonia classes. Using transfer learning, a deep CNN model is proposed to extract distinct and high-level features from X-ray images in collaboration with the pretrained model VGG-16. Despite the limitation of the COVID-19 dataset, the model is evaluated with sufficient COVID-19 images. Extensive experiments for multiclass classifier have achieved 98.91% accuracy, 97.31% precision, 99.50% recall, 98.39% F1-score, while 99.37% accuracy, 98.76% precision, 100% recall, 99.38% F1-score for binary classifier. The proposed system can contribute a lot in diagnosing COVID-19 effectively in the medical field.
Search related documents:
Co phrase search for related documents- accuracy 100 and low accuracy: 1, 2, 3, 4, 5, 6
- accuracy 100 and machine learn: 1
- accuracy 100 and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
- accuracy level and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7
- accuracy level and loss function: 1, 2
- accuracy level and low accuracy: 1, 2, 3, 4, 5, 6
- accuracy level and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- accuracy result and acute respiratory syndrome: 1, 2, 3, 4, 5
- accuracy result and low accuracy: 1, 2
- accuracy result and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- accuracy show and acute respiratory syndrome: 1, 2, 3, 4, 5
- accuracy show and loss function: 1, 2, 3, 4
- accuracy show and low accuracy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- accuracy show and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
- acute respiratory syndrome and adam optimizer: 1
- acute respiratory syndrome and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
- acute respiratory syndrome and low accuracy: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory syndrome and lung cell damage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute respiratory syndrome and lung spread: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Co phrase search for related documents, hyperlinks ordered by date